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Abstract—The natural convection from the neighborhood of several types of thermal leading edges
on vertical walls is investigated. The influence of leading edge conditions for uniform and special
variable wall temperature cases is determined. It is shown for the constant temperature case that
leading edge conditions effect, at suitable distances above the leading edge, only the relative vertical
position of the boundary layer and not its thermal or velocity form. Universal curves which may
be used with relatively arbitrary initial boundary conditions are presented for the uniform walf
temperature case at Prandt] number 0-7. It is indicated how these curves may be used in a piece-wise
manner to investigate relatively arbitrary wall temperature cases.

NOMENCLATURE has been treated by methods which are generally
¢p,  specific heat at constant pressure; variations on the method introduced by Pohl-
k, thermal conductivity; hausen [1] and that credited by Goldstein [2] to
Xy,  non-dimensionalizing length; an unpublished paper by Squire. Both of these
Nug = — x(8T/0y)(Tw — Tw), local Nusselt methods do not take cognizance of the boundary

number; conditions at or near the thermal leading edge
Gry = gBx Ty — Tw)/v, local Grashof num- in the development of the solutions, and the
ber; results are generally unsuitable in this region and
B, coefficient of thermal expansion; questionable above it. For example, one finds in
T, absolute temperature; the case of the constant temperature vertical
x, y, vertical, horizontal co-ordinates with plate infinite heat transfer at this leading edge
origin at bottom surface point; and a convergence of the isotherms to this point.
u, v, absolute and kinematic viscosity respec- In fact, it will be shown that the absence of real
tively; initial boundary conditions makes the previous
g acceleration due to gravity: solution for this case rather fortuitous. This
04 fluid density; paper treats both the constant and variable
Pr,  Prandtl number; temperature plates and includes appropriate
7, temperature function; initial boundary conditions.
3, boundary layer thickness;
§ 2 temperature function coefficient ;
u, speed function; General equations for vertical plate
U, speed. The integrated momentum-energy boundary
layer equations may be used. They are respec-
Subscripts and superscripts tively,

w, wall conditions;
o0, ambient conditions far from wall;

] d 8
—,  non-dimensionalized quantity. —¢ J (po — p)dy + dx _[ pUdy

o [3
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d S
g a;J U — Tw) dy + k(8TJop)y—0 =0. (2)

It will be seen later that in one case of variable
wall temperatures the energy equation should
also have included a vertical conduction term for
the bottom region. It is left out for the moment
because it does mot appear to be significant
in the resulting affect above the bottom region.

An extension of the Squire method will be
used and we will seek similarity solutions of the
form

U=ux)m*—1, 79=1—y8 ()
T/Tw =1 + (x)n2 “
The boundary conditions at the plate surface,
U=0; T/Te =+(x)+ 1 and at the ambient
isotherm U = 0; T/T» = 1 are evidently satis-
fied. The initial boundary conditions are yet to
be imposed. The solution forms (3) and (4)
reduce the equations (1) and (2) to the ordinary
differential equations:

Tud? + ('8 + udd’ — C) =0
2un’d? + u?dd — Cy782 + Cu =0

in which
C, = 60k/pcyg = 60v/Pr;

&)
6

Cs = 35g;
C, =105 ()

and a term 7/252 has been dropped as negligible
in comparison to a term 1/105.

The constant temperature case
Several geometries must be examined in the
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study of the so-called constant temperature case.
One that has been used in the experimental
treatment of the problem is the vertically sus-
pended plate (Fig. la). The equations which
have been used and also those in this paper are
not applicable to the leading edge geometry
below the vertical flat surfaces because for one
thing of the relative direction of the buoyancy
forces and vertical velocity components to the
surface. A complete solution of the problem
would require a multiple matching-solution
system analogous to the two-solution system
used for the flat plate in a uniform stream [3].
The equations above are applicable only at and
above the indicated y-axis and the initial bound-
ary values 8 = 8, u == u, to be used with them
must be determined independently. These initial
values would, for example, be part of the solu-
tion matching process. For the present purpose,
the values §,, u, are treated as arbitrary initial
values. The solution of (5) and (6) with the
required arbitrary initial boundary condition
will be given below.

A second geometry (see Fig. 1b) that may be
considered is that of a vertical wall which has a
constant temperature T, down to a point x = 0
and the constant wall temperature 7o (the
ambient temperature) below this point. Even if
the wall materials permitted a good approxima-
tion to such a temperature jump, there would
none the less be a downward conduction of heat
in the fluid near the wall and a resultant region
of variable temperature below the point x =0
which would once again require a separate
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Fic. 1 (a) (b) (c). Constant temperature cases considered.



THERMAL LEADING EDGES ON VERTICAL WALLS

investigation. Again equations (5) and (6) are
solvable for x > 0 when initial boundary condi-
tions 8(0) = &,, u(0) = u, are given.

A third geometry which may be considered is
that shown in Fig. 1(c). In that case, the wall
temperature down to a point on the wall x = x,
is a constant Ty = Ty From x = x4 to x = 0.
Ty is assumed to continuously decay to the
ambient temperature T« in such a way that
dT,/dx = 0 at x = 0 so that there will be no
downward vertical conduction of heat at x = 0.
An initial boundary condition is definitely
U =0 and x = 0 is a part of the ambient iso-
therm. The bottom region does not need in-
dependent treatment from the standpoint of
initial geometry as in the first two cases and a
complete solution is available from equations
(5) and (6). Even in this case, however, further
examination of the results in the leading edge
region will be needed to determine the effect of
terms omitted in the boundary layer equations
used.

Solutions for the first two cases

It happens that a particularly simple solution
is available for these cases if the initial bound-
ary conditions are related by the equation
(up/ay) = (8y/by)? in which

a} = 4C,y7/(5 + 3C,/Cy)
= 560g7/(20 4 21 Pr)

b2 = 4Cy3a,
— 20v 4/[(20 -+ 21 Pr)/35g-)/Pr. |

This solution is
u = alx + a)’? l
®
8 = bo(x + a)t/* ]

in which the parameter a depends upon the value
that has been determined for either of the initial
boundary conditions u, or 8. It is clear from the
case discussed that zero would not be suitable
selection for either u, or 8, and hence a is
definitely different from zero. It is also clear that
the solution is nowhere independent of the
selected initial boundary condition. It may be
pointed out here that if the transformation
1 = Cyl(x + a)'*; § = 4vCy(x + a)*’*{(n) had
been used in the Pohlhausen solution of the

®
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problem, the additional initial boundary condi-
tion would also have been available and would
have also effected a vertical shift in the boundary
layer. This vertical shift or displacement has
been observed experimentally and reported in
[4]. The use of @ = 0 in the latter treatment of
the problem was evidently inappropriate.

If both initial boundary conditions are to be
selected as independent quantities, then the
solution takes a form

W) = HXJA(X; HX) =y
5(x)/3(0) = SCXBXe); 5(Xy) = 5,
X =(x+ a)b
b = [W(O)/a(Xo) a2
— [5(0)/S(X o\ /b¢
a = X, [u(0)agi( Xy}
— xOpar [0

a? = 560g7/(20 + 21 Pr)
b2 = 20v4/[(20 4+ 21 Pr)/35g7]/Pr
(X o)/84(Xy)
= [u(0)/8%(0)]»(20
+ 21 Pr)/7g=Pr

in which #(X), §(X) are solutions of the universal
system

a8t + 788 =3 )
== 82 72 88/
e +21(; jslzp 21 P (102)
— r 2 r 77—
g Ot g =0

obtained from equations (5) and (6) by the
transformation

X=(x+a)b
#(X) = [u(x)/a,)/b*2

8(X) = [8(x)/b,l/b**.
It may be shown that the system (10a) has the
required universal solution
HX) = X1 & 2m — 3)/(3 — dm)Xm
+ A,/ X+ ...
8% X) = X12[1 4 1/X™m + By/X?m + . ..
m = (60 + 63 Pr)/16, ,/82 + 1
@o/82 > 1, use —
@o/82 < 1, use +

(10b)
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FiG. 1(d). Universal functions (Pr = 0-7) for arbitrary initial boundary conditions.
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Fi1G. 3. Influence of initial boundary conditions on speed function.

in which the series coefficients are functions of
Pr,

These results indicate that for arbitrary initial
boundary conditions #(0), 8(0) the solutions
again acquire the values 8(x) = by(x + a)'/4,
u(x) = ay(x + @)/* at distances adequately
distant from the bottom x = 0 but the displace-
ment parameter ¢ is a function of the initial
conditions assumed. Fig. 1(d) is a plot of the
universal group @, 5 and /82 for Pr = 0-7.
When the values 1(0), 8(0) have been assigned
then the last of the equations (10) determine
#{( Xo)/8% X,). The latter value determines an X,
in the universal curve #/5%. A complete solution
of the specific problem is then readily computed
by equations (10) and the universal curves 4, §.
Figs. 2 and 3 show some results obtained by
direct numerical integration of equations (5) and
(6) for several selections of the initial conditions,
The values of u, 8 were non-dimensionalized by
standards computed in the third case solution,

Solution for the third case

As already indicated, this case includes a vari-
able wall temperature setting. For the present
purpose, a special variable wall temperature dis-
tribution function + will be assumed (Fig. 4).

We have

=0 <0 }
= px™ = p(x/xg)" = px* 0 < % < 1
=pR -2 — 2" 1<8<2 4 (12
=2p 2<%

n>1

and the required leading edge condition,
(dTw/dx)s=y = 0, is satisfied and a solution
giving Uz—y = 0 is required.

One readily finds that equations (5) and (6)
with the assigned temperature function + do
have the required solution

u = 2ptt )
140 — L N
43n -5y + 7 Pr(5n+3)
60v 1.2
174 e
8=p [(Sn +3) Pr] L a3

y-n)yd

L [4GBn - 5) + 7 Pr(5n 4 3))1
L 35g J

0 < x < Xy, n>1 J
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FiG. 4. Variations in wall temperature considered in surface bottom neighborhood.

Table 1. Comparison of current results with those found by Pohlhausen’s method

(Gr./4)4y/x 0 025 05 08 100 150 200 250 Pr=107
=3

0 0-08 0-128 0-148 0144 0094 0030 O

U/[4gB(T,, — To)x]'/
008 0125 0140 0-135 0105 007 004 Approx. values [3]

1 0-81 0640 0443 0356 0156 0037 O
(T — To)/(Tw — Teo)

1 077 057 037 030 016 008 004 Approx. values [3]

The solution (13) was compared with that
found in [5] as shown in Table 1. For the
available comparable cases, that is forn > 1, itis
clear that the results are not significantly differ-
ent. For n <{ 1 new initial boundary conditions
u,, 8, are required and those cases are yet to be
treated.

For values of x > x, the equations were
integrated numerically for several values of
n > 1. Some results are shown in Figs. 5 and 6.
The values of u and 8 for n =3 Pr = 0-7 and
* = 1 were used as non-dimensionalizing stand-
ards. The Pohlhausen results with the bottom
point at ¥ = 1 is included in Fig. 5 for com-
parison purposes. The parallelism of the §
curves soon after the constant temperature
condition is reached is evident and would be

expected in the light of the first cases studied.
Fig. 7 is a detailed calculation for the case
n = 3, Pr = 0-7 and a constant wall temperature
section at Ty = 0-1 Tw. It shows isotherms
entering the wall bottom in an essentially
horizontal attitude and thus pointing to the
need in this region for the retention of the vertical
heat conduction term in the energy equation (2).
This effect is currently under investigation but
some preliminary results may be given here.

BOUNDARY-LAYER EQUATIONS CONTAINING
THE VERTICAL HEAT CONDUCTION TERM
With the inclusion of the vertical heat con-

duction term and the continued assumption of

a similarity solution of the type (3) and (4), the
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boundary-layer differential equations take the
form

Tud? 4 7(u'8% 4 udd) — Cy(r + 82/6
+ 7/88'/3 4+ 788"/6) = 0
2un'd® | 4288’ — Cyr2 - Cau =0

(14)

in which the coefficients C,, C; and C, retain
the values given in (7). For a wall temperature
distribution function of the type = = px®,
an > 1 these equations have a solution of the
form

u = gox1+m2 [1 4 g /x(n+3/2 | g /x(n+3)
+ a3/x3(n+3)/2 + v

8 = box(t-m/4 [] 4 b, [x(n+3)/2
+ by/xn D |

(15)

which indicates that at a suitable distance from
the thermal leading edge which appears to
require the vertical conduction term, the solution
will be unaffected by its presence in the natural
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convection equations. Equation (15) will be
studied in detail for information about the
correction effect of the wvertical conduction
term in the bottom region.

General variable wall temperature case

In cases where the similarity forms defined by
equations (3) and (4) are admissible, a general
variable wall temperature case may be treated
by the solution setting equations (10), (10a) and
(10b) in the following manner. Divide the wall
into successive segments sufficiently small to
allow the use of a mean constant temperature in
each. The terminal conditions on each of the
segments form the initial conditions on the
succeeding segments. Once the initial conditions
have been determined for the very bottom seg-
ment, the problem is completely solved by
successive application of equations (10) and
(10b). Several cases are now being studied in
this manner.

M. G. SCHERBERG
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Résumé—La convection naturelle est étudiée au voisinage de plusieurs types de bords d’attaque
thermiques de parois verticales. L'influence des conditions de bord d'attaque est déterminée pour
des températures de paroi variables et uniformes particuliéres. Dans le cas d'une température de
paroi constante, les conditions de bord d’attaque n’affectent, a des distances convenables au-dessus
du bord d’attaque, que la position relative verticale de la couche limite et non son profil thermigue
ou dynamique. Des courbes universelles, qui peuvent étre utilisées pour des conditions limites initales
relativement arbitraires, sont présentées dans le cas ou la température de paroi est constante et le
nombre de Prandtl égal 4 0,7. On montre comment utiliser ces courbes dans le cas de temperaturés
de paroi relativement arbitraires.

Zusammenfassung—Die natiirliche Konvektion an senkrechten Winden in der Umgebung ver-
schiedener Arten thermischer Anstromkanten wurde untersucht, sowohl fiir gleichmaéssige als auch
fiir veranderliche Wandtemperaturen. Bei konstanter Wandtemperatur ergibt sich in angemessenem
Abstand von der Anstromkante ein Einfluss nur auf die relative Vertikallage der Granzschicht, nicht
auf die Form ihres Temperatur- oder Geschwindigkeitsprofils. Universelle Kurven, die fiir ziemlich
willkiirliche Anfangsbedingungen verwendbar sind, werden fiir gleichméssige Wandtemperatur und
fiir die Prandtl-Zahl 0,7 angegeben. Zur Untersuchung verhéltnismissig willkiirlicher Wandtempera-
turverteilungen wird gezeigt wie diese Kurven stiickweise anzuwenden sind.

Annoranpa—PaccuaTpuBaeTcs cBOGOJHAA HOHBEKLHA OT DPa3IMYHHX 1o (Popme oborpe-
BAEMBIX KPOMOK BEDPTHKAJBHHX cTeHOK. [loKazano, Karoe BILAHHE OKA3BLIBAIT VCIOBHA HA
KPOMHKE B CJIy4afX NOCTOSHHON I M3MeHAeMOW TemmepaTypsl cTeHku. IIpH mnocroAHHOMN
TeMIepaType CTEHKI STH YCIOBHA BIIAKT HA ONpENelICHHOM PACCTOAHNII HAJ KPOMKOW
TOJBLKO Ha OTHOCHTEJIbHOE BEPTHKAIBHOE MOJIOMEHNe MOTPAHHIHOTO CJOs, a He HA ero
NpoduiIL TeMIeparypel I CKOpocTH. [IJIA caydasd MOCTOAHHON TeMIeparypbl CTeHKIT II
gpcaa Ilpangrasi, pasaoro 0,7, npejcTaBieds YHHBEDCANbHBIE KPUBHE, KOTOPBIE MOIYT
GBHITH UCHOJB30BAHAL IIPH OTHOCHTEIBHO [POUBBOILHBIX TPAHIYHEX yciaoBaax. lIokasaha
BO3MOKHOCTb 1ICHOJIb30BAHIA STHX KPUBBIX 110 YaCTAM TPH OTHOCUTENbHO MPOM3BOJNBHOIL
TeMueparype CTEHKI.



