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Abstract-The natural convection from the neighborhood of several types of thermal leading edges 
on vertical walls is investigated. The influence of leading edge conditions for uniform and special 
variable wall temperature cases is determined. It is shown for the constant temperature case that 
leading edge conditions effect, at suitable distances above the leading edge, only the relative vertical 
position of the boundary layer and not its thermal or velocity form. Universal curves which may 
be used with relatively arbitrary initial boundary conditions are presented for the uniform walF 
temperature case at Prandtl number 0.7. It is indicated how these curves may be used in a piece-wise 

manner to investigate relatively arbitrary wall temperature cases. 

NOMENCLATURE 

CP, specific heat at constant pressure; 
k, thermal conductivity; 
X0? non-dimensionalizing length; 
NuZ = - x(W/8y)/(TW - T,), local Nusselt 

number ; 
Grz = gflx3(Tw - Tm)/v, local Grashof num- 

ber; 
BY coefficient of thermal expansion; 
T, absolute temperature; 
x, Y, vertical, horizontal co-ordinates with 

origin at bottom surface point; 
!4 v, absolute and kinematic viscosity respec- 

tively; 
g, acceleration due to gravity; 

L, 
fluid density; 
Prandtl number ; 

7, temperature function; 
6, boundary layer thickness; 
P* temperature function coefficient; 
4 speed function; 
u, speed. 

Subscripts and superscripts 
u’, wall conditions; 
cc. ambient conditions far from wall; 
-3 non-dimensionalized quantity. 

THE heat transfer in natural convection from 
heated or cooled vertical plate or wall sections 

has been treated by methods which are generally 
variations on the method introduced by Pohl- 
hausen [I] and that credited by Goldstein [2] to 
an unpublished paper by Squire. Both of these 
methods do not take cognizance of the boundary 
conditions at or near the thermal leading edge 
in the development of the solutions, and the 
results are generally unsuitable in this region and 
questionable above it. For example, one finds in 
the case of the constant temperature vertical 
plate infinite heat transfer at this leading edge 
and a convergence of the isotherms to this point. 
In fact, it will be shown that the absence of real 
initial boundary conditions makes the previous 
solution for this case rather fortuitous. This 
paper treats both the constant and variable 
temperature plates and includes appropriate 
initial boundary conditions. 

General equations for vertical pIate 
The integrated momentum-energy boundary 

layer equations may be used. They are respec- 
tively, 
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c, g & 
s 
’ pU(T - Tm) dy + WT,‘Wy=o = 0. (2) 
0 

It will be seen later that in one case of variable 
wall temperatures the energy equation should 
also have included a vertical conduction term for 
the bottom region. It is left out for the moment 
because it does not appear to be significant 
in the resulting affect above the bottom region. 

An extension of the Squire method will be 
used and we will seek similarity solutions of the 
form 

U = U(X)(~” - T”), 17 = 1 - y/6 (3) 

T/1”, = 1 + +w. (4) 

The boundary conditions at the plate surface, 
U = 0; T/T, = T(X) + 1 and at the ambient 
isotherm U = 0; T/7’* = 1 are evidently satis- 
fied. The initial boundary conditions are yet to 
be imposed. The solution forms (3) and (4) 
reduce the equations (1) and (2) to the ordinary 
differential equations : 

r’t162 -j- T(U’P + s&6 - C,) = 0 (5) 

2uu’62 _t l&W - C3.rS2 f C&U = 0 (6) 

in which 

C, = 60kjpcPg = 6OvlPr; C, = 35g; 

c* = 105V (7) 

and a term r/1252 has been dropped as negligible 
in comparison to a term l/105. 

The constant temperature case 
Several geometries must be examined in the 

k 

1 
t 
h! 

study of the so-called constant temperature case. 
One that has been used in the experimental 
treatment of the problem is the vertically sus- 
pended plate (Fig. la). The equations which 
have been used and also those in this paper are 
not applicable to the leading edge geometry 
below the vertical flat surfaces because for one 
thing of the relative direction of the buoyancy 
forces and vertical velocity components to the 
surface. A complete solution of the problem 
would require a multiple matc~ng-solution 
system analogous to the two-solution system 
used for the flat plate in a uniform stream [3]. 
The equations above are applicable only at and 
above the indicated y-axis and the initial bound- 
ary values 6 = S,, u = u0 to be used with them 
must be determined independently. These initial 
values would, for example, be part of the solu- 
tion matching process. For the present purpose, 
the values S,, ug are treated as arbitrary initial 
values. The solution of (5) and (6) with the 
required arbitrary initial boundary condition 
will be given below. 

A second geometry (see Fig. 1 b) that may be 
considered is that of a vertical wall which has a 
constant temperature T, down to a point s = 0 
and the constant wall temperature T, (the 
ambient temperature) below this point. Even if 
the wall materials permitted a good approxima- 
tion to such a temperature jump, there would 
none the less be a downward conduction of heat 
in the fluid near the wall and a resultant region 
of variable temperature below the point .Y == 0 
which would once again require a separate 

tb) (Cl 

FIG. 1 (a) (b) (c). Constant temperature cases considered. 
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investigation. Again equations (5) and (6) are 
solvable for x > 0 when initial boundary condi- 
tions 6(O) = a,, u(0) = u0 are given. 

A third geometry which may be considered is 
that shown in Fig. l(c). In that case, the wall 
temperature down to a point on the wall x = x,, 
is a constant Tw = T,,. From x = x,, to x = 0. 
Tw is assumed to continuously decay to the 
ambient temperature T, in such a way that 
dT&lx = 0 at x = 0 so that there will be no 
downward vertical conduction of heat at x = 0. 
An initial boundary condition is definitely 
U = 0 and x = 0 is a part of the ambient iso- 
therm. The bottom region does not need in- 
dependent treatment from the standpoint of 
initial geometry as in the first two cases and a 
complete solution is available from equations 
(5) and (6). Even in this case, however, further 
examination of the results in the leading edge 
region will be needed to determine the effect of 
terms omitted in the boundary layer equations 
used. 

Solutions.for theJirst two cases 
It happens that a particularly simple solution 

is available for these cases if the initial bound- 
arv conditions are related by the equation 
(ui/a,) = (6,/bJ2 in which 

a; = 4C,7/(5 + 3C,/C,) 

= 56OgT/(20 + 21 

b,” = 4C,/3a0 

= 2OV 2/[(20 + 21 

This solution is 

pr> 1 (8) 

Pr)/35gr]/Pr. J 

u = aO(x + 

6 = bO(x + 

4 l/2 

a) l/4 
1 

J 
(9) 

in which the parameter a depends upon t.he value 
that has been determined for either of the initial 
boundary conditions u,, or 6,. It is clear from the 
case discussed that zero would not be suitable 
selection for either u0 or 6, and hence a is 
definitely different from zero. It is also clear that 
the solution is nowhere independent of the 
selected initial boundary condition. It may be 
pointed out here that if the transformation 
17 = Q/(x + a)‘14; # = 4vC2(x + aj3145(T) had 
been used in the Pohlhausen solution of the 

problem, the additional initial boundary condi- 
tion would also have been available and would 
have also effected a vertical shift in the boundary 
layer. This vertical shift or displacement has 
been observed experimentally and reported in 
[4]. The use of a = 0 in the latter treatment of 
the problem was evidently inappropriate. 

If both initial boundary conditions are to be 
selected as independent quantities, then the 
solution takes a form 

U(X)/U(O) = z?(X)/G(X,); W(X,) 3 tie 1 

S(.~)/S(O) = S(X)/S(X,); 8(X,) = 8, 

X = (x + a)/b 

a,” = 56Ogr/(20 + 21 Pr) 

bi = 2Ov 4[(20 + 21 Pr)/35gr]/Pr 

Li(X,@“( X,) 

= [u(o)/6yo)]V(20 

+ 21 Pr)/7grPr 

in which U(X), X(X) are solutions of the universal 
system 

obtained from equations (5) and (6) by the 
transformation 

X = (x + a)/b 

G(X) = [u(x)/a,,]/b1/2 

1’ 

(lob) 

S(X) = [S(x)/bJ/b”“. 

It may be shown that the system (lOa) has the 
required universal solution 

n(X) = X1j2[1 & (2m - 3)/(3 - 4m)Xm 

+ A,lX2na + . . . 
S2(X) = x1’2[1 f l/Xm + B2/Xam + . . . 

m = (60 + 63 Pr)/16, i&,/8; + 1 
zi& > 1, use - 
z&/8: < 1, use + 
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FIG. l(d). Universal functions (Pr = 0.7) for arbitrary initial boundary conditions. 
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FIG. 2. Influence of initial boundary conditions on boundary layer thickness. 
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FIG. 3. Influence of initial boundary conditions on speed function. 

in which the series coe~~ents are functions of 
Pr. 

These results indicate that for arbitrary initial 
boundary conditions u(O), S(0) the solutions 
again acquire the values 6(x) = b,(x + a)l/J, 
u(x) = a*(x + Cz)l’Z at distances adequately 
distant from the bottom x = 0 but the displace- 
ment parameter a is a function of the initial 
conditions assumed. Fig. l(d) is a plot of the 
universal group ii, 8 and ii/s2 for Pu = 0.7. 
When the values u(O), S(0) have been assigned 
then the last of the equations (10) determine 
~(~*)/~2(~*). The latter value determines an X, 
in the universal curve E/B”. A complete solution 
of the specific problem is then readily computed 
by equations (10) and the universal curves zi, 8. 
Figs. 2 and 3 show some results obtained by 
direct numerical integration of equations (5) and 
(6) for several selections of the initial conditions. 
The values of U, 8 were non-dimensionalized by 
standards computed in the third case solution. 

Solution for the third case 
As already indicated, this case includes a vari- 

able wall temperature setting. For the present 
purpose, a special variable wall temperature dis- 
tribution function T will be assumed {Fig. 4). 

We have 

7=0 Z<O 

p(x/xop = jE_” 0 < 2 < 1 
1 

= pxn = 

=j$2 - (2 - @] 1 <Z<2 (12) 

= 2jj 2,(-r 

n>l ! 

and the required leading edge condition, 
(dT,/dx),=, = 0, is satisfied and a solution 
giving UZCO = 0 is required. 

One readily finds that equations (5) and (6) 
with the assigned temperature function T do 
have the required solution 

u -1: @,‘2 ? 

VT 140 _--.--_ _ 
4(3~+5)+7~~(5~+3) i 

_y(l+n):z 

* Ep-1/4 [-&L_J 

.j4(3J(+ 5) + 7 IV (5n + 3!\1’4y(l_R)ia ___---- 
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0 0.2 0.4 06 0.0 I.0 1.2 I.4 .I.6 I.6 

FIG. 4. Variations in wall temperature considered in surface bottom neighborhood. 

Table 1. Comparison of current results with those found by Pohlhausen’s method 

0 0.25 0.5 0.83 1.00 1.50 2.00 2.50 Pr = 0.7 
= 3 

0 0.08 0.128 0.148 0.144 0.094 0.030 0 
u/[4gHT, - ZO)~I”~ 

0 0.08 0.125 0.140 0.135 0.105 0.07 0.04 Approx. values [3] 

1 0.81 0.640 0443 0.356 0.156 0.037 0 
(T - T&/(7-, - T& 

1 0.77 0.57 @37 0.30 0.16 0.08 0.04 Approx. values [3] 

___ 

The solution (13) was compared with that 
found in [5] as shown in Table 1. For the 
available comparable cases, that is for n > 1, it is 
clear that the results are not significantly differ- 
ent. For n < 1 new initial boundary conditions 
uO, 6, are required and those cases are yet to be 
treated. 

For values of x > x0 the equations were 
integrated numerically for several values of 
n > 1. Some results are shown in Figs. 5 and 6. 
The values of u and 6 for n = 3 Pr = O-7 and 
.Z = 1 were used as non-dimensionalizing stand- 
ards. The Pohlhausen results with the bottom 
point at Z = 1 is included in Fig. 5 for com- 
parison purposes. The parallelism of the 6 
curves soon after the constant temperature 
condition is reached is evident and would be 

expected in the light of the first cases studied. 
Fig. 7 is a detailed calculation for the case 
n = 3, Pr = 0.7 and a constant wall temperature 
section at Tw = O-1 Tm. It shows isotherms 
entering the wall bottom in an essentially 
horizontal attitude and thus pointing to the 
need in this region for the retention of the vertical 
heat conduction term in the energy equation (2). 
This effect is currently under investigation but 
some preliminary results may be given here. 

BOUNDARY-LAYER EQUATIONS CONTAINING 

THE VERTICAL HEAT CONDUCTION TERM 

With the inclusion of the vertical heat con- 
duction term and the continued assumption of 
a similarity solution of the type (3) and (4), the 
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FIG. 5. Boundary layer thickness distributions for several values of n and previous theory. 
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boundary-layer differential equations take the 
form 

Q-‘&P + +‘P + z&S’) - C&T + S27”J6 

+ r’66’/3 + &Y/6) = 0 

2uu’P + 24266’ - C&2 + c,u = 0 

in which the coefficients C,, C3 and C, retain 
the values given in (7). For a wall temperature 
distribution function of the type T = px”, 
n > 1 these equations have a solution of the 
form 

u = u0X(1+n)/2 [l + al/X(n+3)/3 + a3/xw3) 

+ a3/x3(n+3)/2 + . . . 

6 = boxww4 [1 + ~l/x(~f3~12 

+ b2/X@+3) + . . . 

1009 

which indicates that at a suitable distance from 0 I 2 

the thermal leading edge which appears to x= x/a 

require the vertical conduction term, the solution 
will be unaffected by its presence in the natural 

FIG. 6. Behavior of speed function factor in surface 
bottom neighborhood. 

isotherms 

FIG. 7. Flow structure at surface bottom neighborhood. Mass flow between streamlines 
[Mass/~,&,)r=, ; ,,as: ++,I = 0.02. 
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convection equations. Equation (15) will be 
studied in detail for information about the 
correction effect of the vertical conduction 
term in the bottom region. 

General variable wall temperature case 
In cases where the similarity forms defined by 

equations (3) and (4) are admissible, a general 
variable wall temperature case may be treated 
by the solution setting equations (lo), (lOa) and 
(lob) in the following manner. Divide the wall 
into successive segments sufficiently small to 
allow the use of a mean constant temperature in 
each. The terminal conditions on each of the 
segments form the initial conditions on the 
succeeding segments. Once the initial conditions 
have been determined for the very bottom seg- 
ment, the problem is completely solved by 
successive application of equations (10) and 
(lob). Several cases are now being studied in 
this manner. 
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R&sum&-La convection naturelle est etudiee au voisinage de plusieurs types de bords d’attaque 
thermiques de parois verticales. L’influence des conditions de bord d’attaque est determinee pour 
des temperatures de paroi variables et uniformes particulieres. Dans le cas dune temperature de 
paroi constante, les conditions de bord d’attaque n’atfectent, a des distances convenables au-dessus 
du bord d’attaque, que la position relative verticale de la couche limite et non son profil thermique 
ou dynamique. Des courbes universelles, qui peuvent &tre utilisees pour des conditions limites initales 
relativement arbitraires, sont present& dans le cas oti la temperature de paroi est constante et le 
nombre de Prandtl Cgal a 0,7. On montre comment utiliser ces courbes dans le cas de temperatures 

de paroi relativement arbitraires. 

Zusammenfassmg-Die natiirliche Konvektion an senkrechten Wlnden in der Umgebung ver- 
schiedener Arten thermischer Anstromkanten wurde untersucht, sowohl fur gleichmlssige als such 
ftir vertiderliche Wandtemperaturen. Bei konstanter Wandtemperatur ergibt sich in angemessenem 
Abstand von der Anstromkante ein Eintluss nur auf die relative Vertikallage der Granzschicht, nicht 
auf die Form ihres Temperatur- oder Geschwindigkeitsprofils. Universelle Kurven, die fiir ziemlich 
willkiirliche Anfangsbedingungen verwendbar sind, werden fur gleichmassige Wandtemperatur und 
fiir die Prandtl-ZahlO,7 angegeben. Zur Untersuchung verhlltnismlssig willkiirlicher Wandtempera- 

turverteilungen wird gezeigt wie diese Kurven stiickweise anzuwenden sind. 

AHHOTrtI(lWI--PaCCMaTpMBaeTCR CBO60zHaFi KOHBeKqlIR OT pa3JWIHbIX II0 @OpMe oiiorpr- 
BaeMbIX KpOMOK BepTIlKaJIbHbIX CTeHOK. rIoKasaII0, nauoe BJIIIFIHIIe OKa3LIBaIOT yCJIOBIIII Ha 

KpoMKe I3 CJIyYaFlx IIOCTOfIHHOti II H3xeHFIeMOfI TeMIIepaTypbI CTeHKII. npI1 nOCTORIIHOil 

renrneparype crennn Audi ~CJIOBIIR BJILIFIIOT Ha onpenenenno>t paccronrrnrr na;l ~p0b1K0Ii 

TOJIbKO I,a OTHOCLITeJIbHOe BepTIlKaJIbHOe IIOJIOFKeHIIe IIOrpaHIIIIHOrO CJIOR, a Ke Ha er0 

npo@mb TemepaTypbI 11x11 cKop0c~11. SJIR c.TIysaII IIOCTOFIHHOik TeMIIepaTypbI CTeHKII II 

WICJIa npaHnTJIFI, paBHOI'0 0,7, IIpeaCTaBneIIbI yHLiBepCanbHbIe IipHBbIe. KOTOpbIe MOrST 

6bITb IICIIOJb3OBaHbI IIpII OTHOCJITeJIbHO IIpOlI3BO.UbHbIX rpaHlIWbIX yCJIOBWIX. nOKa3aHa 

B03MOHFHOCTb IICIIOJIb30BaHIIR 3TIIX KplIBbIX II0 YaCTRM IIpII OTIIOCLITeJIbI~O IIpOI43BOJIbHOii 

TemepaType CTeKKII. 


